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Multiagent activity is commonplace in everyday life and can improve
the behavioral efficiency of task performance and learning. Thus,
augmenting social contexts with the use of interactive virtual and
robotic agents is of great interest across health, sport, and industry
domains. However, the effectiveness of human–machine interaction
(HMI) to effectively train humans for future social encounters de-
pends on the ability of artificial agents to respond to human coac-
tors in a natural, human-like manner. One way to achieve effective
HMI is by developing dynamical models utilizing dynamical motor
primitives (DMPs) of human multiagent coordination that not only
capture the behavioral dynamics of successful human performance
but also, provide a tractable control architecture for computerized
agents. Previous research has demonstrated how DMPs can success-
fully capture human-like dynamics of simple nonsocial, single-actor
movements. However, it is unclear whether DMPs can be used to
model more complex multiagent task scenarios. This study tested
this human-centered approach to HMI using a complex dyadic shep-
herding task, in which pairs of coacting agents had to work together
to corral and contain small herds of virtual sheep. Human–human
and human–artificial agent dyads were tested across two different
task contexts. The results revealed (i) that the performance of human–
human dyads was equivalent to those composed of a human and the
artificial agent and (ii) that, using a “Turing-like” methodology, most
participants in the HMI condition were unaware that they were work-
ing alongside an artificial agent, further validating the isomorphism
of human and artificial agent behavior.

multiagent coordination | human–machine interaction | task-dynamic
modeling | dynamical motor primitives | shepherding

Many human behaviors are performed in a social setting and
involve multiple agents coordinating their actions to achieve

a shared task goal. Such multiagent coordination occurs when two
or more individuals move heavy furniture up a flight of stairs,
when family members work together to catch an escaped pet, or
when teammates perform an offensive attack against an oppos-
ing team in football or rugby. Indeed, multiagent coordination is
a ubiquitous part of everyday life that not only fosters new and
more efficient modes of behavioral activity but also, plays a fun-
damental role in human perceptual motor development and
learning as well as human social functioning more generally (1–6).
Due to rapid advancements in interactive virtual reality (VR)

and robotics technologies, opportunities for the inclusion of ar-
tificial agents in multiagent contexts is also rapidly increasing
within today’s society [i.e., human–machine interaction (HMI)].
The potential applications of HMI include behavioral expertise
training and perceptual motor rehabilitation (7, 8), enhancing
prosocial functioning in children with social deficit disorders (9),
and assisting the elderly and individuals with disabilities with
daily life activities (10, 11). Like effective human–human in-
teraction, the effectiveness of HMI systems within these contexts
depends on the ability of artificial agents to respond and adapt to
the movements and actions of human coactors in a natural and
seamless manner (12–17). One approach to ensuring the kind of

robust HMI required to achieve and enhance real-world task
outcomes is to identify and model the embedded perceptual
motor coordination processes or task/behavioral dynamics that
define adaptive human multiagent task activity (18–22).
Unfortunately, the body of research aimed at formally mod-

eling the dynamics of goal-directed multiagent perceptual motor
activity for HMI applications remains rather small (13, 23–25).
This is due, in part, to the assumed complexity of such behavior
(i.e., the high dimensionality of the possible perceptual motor
control solutions that can define a given multiagent environment
task scenario) (26, 27). In contrast to this assumption, however,
there is now a growing body of research within the biological,
motor control, and cognitive sciences that has revealed that a
large number of goal-directed human perceptual motor behav-
iors are constituted by just two fundamental movement types
(28–30): discrete movements, such as when one reaches for an
object or target location, taps a piano key, or throws a dart; and
rhythmic movements, such as when one walks, waves a hand, or
hammers a nail.
The collective implication of this previous work is that the task/

behavioral dynamics of human perceptual motor behavior, in-
cluding coordinated multiagent activity (31), can often be modeled
by composing the elemental behaviors of two basic types of dy-
namical systems, namely point attractors [for modeling discrete
movements or actions (20, 32–34)] and limit cycles [for modeling
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rhythmic movements or actions (35–38)]. The general hypothesis
is that, given the right generative formulation and interagent or
environmental coupling terms, the spatiotemporal patterning of a
large number of human end effector or multijoint limb move-
ments can be modeled using these dynamical motor primitives
(DMPs) (22). Consistent with this latter hypothesis, these DMPs
have been used to model a wide range of human actions [e.g.,
reaching, cranking, waving, drumming, racket swinging, obstacle
avoidance, route navigation (20, 39–41)], including several dy-
adic social motor behaviors (18, 19, 42).
Relatedly, low-dimensional dynamical systems composed of

point attractor and limit cycle primitives are hypothesized to be a
suitable control architecture for embodied artificial agents to
produce “human-like” behavior. At the level of individual
(nonsocial) action, Ijspeert et al. (29, 39) have provided pre-
liminary support for this hypothesis, demonstrating how task-
specific models composed of point attractor and limit cycle dy-
namical primitives can be used to generate human-like reaching,
obstacle avoidance, drumming, and racket-swinging behavior in
simulated virtual end effector systems or multijoint robotic arms.
A dyadic interpersonal rhythmic coordination task (43) demon-
strated how a virtual avatar embodying a coordinative model
capable of mirroring discrete finger flexion extensions as well as
rhythmic, oscillatory behavior reproduced the same stable be-
haviors seen in the interpersonal behavioral synchrony literature
(18, 44–47). Furthermore, this virtual avatar was capable of
steering novices to adopt difficult to produce coordinative pat-
terns (23). Moreover, some participants attributed agency to the
virtual avatar, providing preliminary support for the effectiveness
of such models to produce human-like behavior when appro-
priately coupled to other human coactors (43, 48).

DMPs for Complex Multiagent Tasks: A Shepherding
Example
Previous research modeling and designing artificial systems uti-
lizing DMPs has focused on either nonsocial or minimally goal-
directed task contexts (although refs. 42 and 49 discuss modeling
more complex task contexts). The aim of this work was to expand
the feasibility of DMPs for HMI by demonstrating the effective-
ness of such an approach within the context of a complex, goal-
directed multiagent task. An excellent paradigmatic example of
multiagent activity found in several species is group corralling and
containment, which is oftentimes seen in animal shepherding and
hunting behavior (50–52). Such shepherding and containment
behavior require the coordination of multiple coactors to control a
dynamically changing environment (e.g., the containment of herds
of animals or fleeing prey). To solve the task, coactors must divide
the task space appropriately and switch between multiple behav-
iors depending on changing environmental states (e.g., transition-
ing between prey pursuit and herd containment). Such behavior
is not only necessary for the survival of certain predators but
has applications in robotic crowd control, security, and envi-
ronment hazard containment systems (52–55). Furthermore,
parallels can be made to other human group behaviors, such as
military and team sports performance that requires problem
solving and decision making among multiple actors.
Human dyadic shepherding has been recently investigated as a

paradigmatic example of complex goal-directed dyadic coordina-
tion in our previous work (19). Inspired by previous work utilizing
a single-player object control task (56), the shepherding task re-
quired human dyads, standing on opposite sides of a game field
projected on a tabletop display, to cooperatively herd, corral, and
contain simulated “sheep” agents (rolling brown spheres) within a
predefined target region (the red circles in Fig. 1 A and B). The
participants controlled virtual “sheepdogs” (blue and orange cubes

Fig. 1. Observed behaviors and simplified model for the multiagent shepherding task. (A and B) Depiction of successful S&R and COC (Left). The black line
trajectory indicates the previous 5 s of behavior. Timeseries during one successful trial of each angular component of the participant’s position (Center) and
corresponding power spectra (Right), with a 0.5-Hz frequency boundary used to distinguish between S&R and COC behavioral modes. (C) Simplified shepherding
model developed to describe behavior seen in ref. 19) (Materials and Methods has the more detailed model equations used for this study). Eq. F1 is a linear
damped mass spring equation that reduces the difference between agent i’s current radial distance, ri, to the radial distance, rsfðtÞ,i, of the farthest sheep on agent
i’s one-half of the game field at time t plus a fixed distance, rmin, to ensure repulsion toward the center. Eq. F2, excluding, β _θ

3
i + γθ2i _θi, is identical to Eq. F1 but for

the control of agent i’s angular movement, θi. The inclusion of the terms β _θ
3
i + γθ2i _θi convert the linear damped mass spring to a nonlinear system with behavior

that can exhibit both point attractor dynamics (akin to Eq. F1) when bθi > 0 and limit cycle dynamics when bθi ≤ 0 (the blue agent in C, Right). The dissipative
coupling function on the right side of Eq. F2 ensures oscillatory synchronization between agent i and partner j. Eq. F3 is a parameter-dynamic function that
determines the value of parameter bθi, such that bθi will be attracted to a value that is less than or equal to zero when the radial distance of agent i’s farthest
sheep rsfðtÞ,i ≤ rΔ. Materials and Methods has more details, including human- and task-specific modifications for the experiments presented in this paper.
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in Fig. 1 A and B) using a handheld motion sensor. Sheep
movement entailed both stochastic and deterministic qualities.
When left undisturbed, each sheep would exhibit Brownian mo-
tion, randomly rolling around the game field. However, when a
participant’s hand/sheepdog came within a specific distance of the
sheep, the sheep would react by moving in the opposite direction,
away from the participant’s hand/sheepdog location. The level
of task difficulty was manipulated by changing herd size (i.e.,
three, five, or seven sheep), with participants given the task goal
of keeping the sheep within the target region for as long as possible
during 1-min trials. A successful trial was deemed to have occurred
if participants were able to contain the sheep for 70% of the
last 45 s of each trial (i.e., 31.5 s within the last 45 s). Finally,
task failure was also deemed to occur (and trials ended early) if
any one sheep reached the outer fence of the game field or if all
sheep moved too far outside the target region (where “too far”
was defined as beyond the outside perimeter of the light gray
annulus surrounding the target region in Fig. 1 A and B).
Initially, all dyads adopted a search and recover (S&R) mode

of behavior, which involved each participant discretely moving
toward and herding the sheep farthest from the target region on
their side of the game field. After varying lengths of game play,
however, a small subset of dyads spontaneously discovered a
second and more effective mode of behavior termed coupled
oscillatory containment (COC). This mode of behavior involved
both participants in a dyad moving in a rhythmic, semicircular
manner around the sheep, essentially forming a virtual wall
around the herd (Fig. 1 A and B has depictions of S&R and COC
behavior, respectively). Consistent with the dynamic stabilities of
intra-/interpersonal rhythmic interlimb coordination (35, 44, 57),
dyads exhibited both in-phase (0°) and antiphase (180°) patterns
of COC coordination. In addition to COC behavior resulting in
higher containment times and better herd control (i.e., less herd
spread) compared with S&R behavior, COC was also more likely
to be discovered and adopted by dyads as task difficulty in-
creased (i.e., as herd size increased). In other words, the less
effective dyads were at herding the sheep via the S&R mode of
behavior, the more likely they were to spontaneously discover
COC behavior. In fact, the discovery of COC behavior was
equated to a kind of “eureka” or sudden insight moment for
participants, with those dyads that discovered COC behavior
achieving nearly 100% containment success after its discovery.
Both S&R and COC behaviors reflect task-specific realizations

of environmentally coupled point attractor and limit cycle dy-
namics. This is illustrated in Fig. 1C, where the system equations
(Eqs. F1–F3 in Fig. 1C) for the time-evolving end effector
movements of each ith agent’s hand/sheepdog (where i = 1–2) are
defined in polar coordinates with respect to the center of the
target containment region, ðri, θiÞ= ð0,0Þ. As a generalizable
model of two-agent S&R and COC shepherding behavior (Ma-
terials and Methods has experiment-/task-specific adaptions and
expanded description), a discrete or point attractor damped mass
spring equation (Eq. F1 in Fig. 1C) is used to define an agent’s
radial distance from the center of the game field, and a nonlinear
hybrid system, capable of both discrete (point attractor) and
rhythmic (limit cycle) behavior (Eq. F2 in Fig. 1C) (ref. 36 has
details), is used to define an agent’s polar angle dynamics. Note
that, during agent i’s S&R behavior, the sheep farthest from the
center of the game field at time t [denoted by the subscript sf(t),i]
on that agent’s side of the field defines the target location (i.e.,
attractor location) of the sheep in both Eq. F1 in Fig. 1C (radial
target coordinate, where distance rmin is the agent’s preferred
minimum distance away from the sheep, ensuring repulsion of the
sheep toward the target region) and Eq. F2 in Fig. 1C (polar angle
coordinate). That is, each agent is coupled to the movements of
the farthest sheep on their side of the field. The agents are also
coupled to each other via a dissipative coupling function in Eq.
F2 in Fig. 1C. This interagent coupling (44, 45) ensures stable in-
phase synchronization during COC behavior and reflects the
natural behavioral synchrony phenomena commonly observed
between interacting agents more generally (ref. 47 has a review).

Key to the differential enactment of S&R vs. COC behavior,
however, is bθi (the parameter of the linear damping term in Eq.
F2 in Fig. 1C), which is modulated by the radial distance of an
agent’s “farthest sheep”: rsf(t),i (Eq. F3 in Fig. 1C). In short, when
agent i’s farthest sheep is outside the target region, bθi ≥ 0, agent
i’s polar angle, θi, is simply attracted to the angular position of the
farthest sheep [θsfðtÞ,i]. Hence, when bθi ≥ 0, agent i exhibits S&R-
type behavior. However, when agent i’s farthest sheep is corralled
inside the target containment region, the value of bθi changes from
positive to negative, and a Hopf bifurcation* occurs, such that, for
bθi < 0, agent i’s polar angle dynamics are defined by limit cycle
behavior. Accordingly, when both agent’s sheep are within the
containment region, COC behavior results.

This Study
Across two experiments, this study tested whether low-dimensional
models consisting of fixed point and limit cycle DMPs can,
when embodied in the control architecture of a virtual avatar
working alongside human novices, achieve robust HMI in more
complex, goal-directed multiagent task contexts—in this case,
within the context of a dyadic shepherding task (19). These
experiments compared novice human participants completing
the dyadic shepherding task with either another human coactor
or a virtual artificial agent whose end effector movements were
controlled by task-specific relations of the shepherding model
detailed in Fig. 1C (again, Materials and Methods has details
about the task-specific modifications). Pursuant to the primary
aim, the study sought to determine whether novice participants,
when working with the artificial agent, can learn to adopt and
maintain COC behavior in a way comparable with human–human
COC discoverers as an efficient means to complete the shep-
herding task. Furthermore, the study sought to determine whether
interacting with the artificial agent is perceived as natural by assessing
participant believability that their partner was a human coactor.
For experiment 1, the same tabletop shepherding task used by

Nalepka et al. (19) was used. However, in contrast to Nalepka
et al. (19), participants completed the task within a fully
immersive VR environment. Participants viewed the shepherd-
ing task environment from a first-person perspective via an Oc-
ulus Rift head-mounted display and completed the task by
controlling the end effector movements of a humanoid crash test
dummy avatar using a handheld motion sensor. A participant’s
coactor was also represented as a humanoid crash test dummy
avatar (Fig. 2A). To validate this VR setup, we first instructed
dyads of novice participants to complete the VR shepherding
task together (experiment 1a), with the expectation that these
novice dyads would exhibit the same (i.e., replicate) behavioral
dynamics observed by Nalepka et al. (19). After this, experiment
1b compared the behavioral dynamics and performance of nov-
ices who completed the shepherding task together with the ar-
tificial agent (i.e., the model-controlled crash test dummy) with
those who worked together with an expert confederate partici-
pant. For both conditions, the confederate posed as a naïve
participant who sat beside participants in the waiting area. Par-
ticipants were taken to one room, while the confederate (who
participants were told would be their partner) was taken to an
adjacent laboratory. Participants were not allowed to verbally
communicate with each other (in any condition), and for both
the artificial agent and confederate conditions (experiment 1b),
participants were told that their partner would complete the task
remotely from an adjacent laboratory. Accordingly, during a
postexperiment funnel debriefing session (61), we also assessed
whether the novice participants remained in belief that they were
working with a human during the experiment or if there was

*A Hopf bifurcation occurs when stable point attractor behavior destabilizes and gives
way to stable limit cycle behavior. Hopf bifurcations reflect a general dynamical princi-
ple by which rhythmic activity can emerge in physical and biological systems, including
neural, sensorimotor, and cognitive systems (19, 38, 58–60).
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suspicion that they were working alongside an artificial agent (a
Turing-like test).
For experiment 2, novice–novice and novice–artificial agent

dyads completed a less constrained version of the shepherding
task, in which all of the sheep (now scattered randomly across the
game field) still needed to be herded together in the same region
but the location of this region was not specified (i.e., participants
were free to self-choose where they herded the sheep). In addition
to further validating whether the proposed shepherding model
could be used for robust HMI, this second experiment also pro-
vided a test of whether S&R and COC modes of behavior gen-
eralized across different, less constrained task contexts.
For both experiments, testing lasted for a maximum of 45 min

or until a dyad performed eight successful trials. For experiment 1,
a trial was considered successful if a dyad was able to contain the
herd within the target region at the center of the game field for
70% of the last 45 s of each 1-min trial (i.e., 31.5 s within the last
45 s). Trials ended early (with no score) if any one sheep reached
the bordering fence or if all sheep dispersed too far from the
center (Materials and Methods has more details). For experiment
2, a trial was considered successful if a dyad was able to contain
the herd within a similar area to experiment 1—but could do so
anywhere within the game field for 70% of the last 45 s of each
2-min trial. Trials were 2 min in length to allow extra time for
participants to collect the sheep, which (unlike experiment 1) were
randomly scattered throughout the task environment. Because no
containment region was visible in experiment 2, participants received
visual feedback when the sheep were considered adequately
contained (i.e., the color of the sheep turned from brown to red).
A video summarizing the behaviors observed in experiments
1 and 2 as well as a web-based, interactive demonstration ver-
sion of the experimental task and artificial agent behavior can
be found at https://github.com/MultiagentDynamics/Human-
Machine-Shepherding/.

Results
Experiment 1a. Fifteen novice–novice dyads were recruited to
complete the shepherding task in the VR environment with the
centrally located target region specified (Fig. 2A). Overall, the
behavioral dynamics exhibited by these novice–novice dyads
replicated the findings of Nalepka et al. (19). All dyads initially
adopted the S&R mode of behavior, but not all were able to
successfully complete the task, with only nine (60%) of dyads
reaching eight successful containment attempts within the 45-min
testing period (M = 29.06 min needed, SD = 6.89). Importantly, a
small subset of successful dyads (n = 3) discovered and transi-
tioned to COC behavior over the course of experimental testing
(M = 7 COC trials of 8, SD = 1.73). In such trials, a dyad’s be-
havior was classified as COC when both participants exhibited a
spectral peak ≥0.5 Hz (M = 0.77 Hz, SD = 0.12) (19) (Materials
and Methods has more details). As observed in Nalepka et al.
(19), nearly all COC behavior was constrained to a stable in-
phase (0°) or antiphase (180°) pattern of coordination, with
only one COC-classified trial exhibiting no stable relative-phase
relationship. Finally, shepherding performance was superior for
COC behavior compared with S&R behavior (Fig. 2C). That is,
the novice–novice dyads that adopted COC behavior were able
to contain the sheep for a greater period (containment time P =
0.004, d = 2.56), which was the explicit task goal, as well as keep
the sheep closer to the center of the containment region (sheep
distance P = 0.005, d = 2.63) and minimize the overall movement
of the herd (herd travel P = 0.03, d = 2.25).

Experiment 1b. Eleven participants completed the virtual shep-
herding task together with the coacting virtual avatar whose end
effector movements were artificially (model) controlled. Another
10 participants completed the virtual shepherding task together
with the coacting virtual avatar who was controlled by the expert
human–confederate. As expected, the results demonstrated that
novices were able to successfully complete the shepherding task
together with the artificial agent, including learning to use COC

Fig. 2. Experiment 1 setup, behaviors, and results. (A) Depiction of the shepherding task used in experiment 1 modeled after the experimental room in which
testing took place (19) (Upper). First-person perspective of the shepherding task with initial sheep (modeled as spheres) arrangement (Lower). The sheepdogs
(orange and blue cubes) were controlled via the movements of a handheld motion sensor on a tabletop of similar dimension. The goal was to contain the
sheep within the red target region. (B, Upper) Average power spectra across participants in each dyad type (novice–novice in experiment 1a; novice–con-
federate and novice–artificial agent in experiment 1b) calculated from the last 45 s of all successful trials. (B, Lower) Average power spectra of each par-
ticipant type in the novice–confederate and novice–artificial agent conditions. (C) Shepherding performance metrics for successful trials across behavioral
mode and condition: S&R novice–novice dyads—dyads that only exhibited successful S&R behavior; COC novice–novice dyads—performance during COC-
classified trials from dyads that discovered COC behavior; and novice–confederate and novice–artificial agent dyads—performance during successful COC-
classified trials from dyads in both conditions. Performance metrics were containment time—the amount of time (seconds) that all sheep were contained
within the red target region; sheep distance—the mean sheep distance from the center of the target region; herd spread—the average herd spread (cen-
timeters squared) measured by computing the convex hull formed by all of the sheep (the convex hull is defined by the smallest convex polygon that can
encompass an entire set of objects, like a rubber band placed over a set of pegs); and herd travel—defined as the cumulative distance (centimeters) that the
herd’s COM moved during the trial. The herd’s COM was computed by taking the mean sheep’s position. Error bars represent SE.

1440 | www.pnas.org/cgi/doi/10.1073/pnas.1813164116 Nalepka et al.
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behavior, and reached performance levels equivalent to those
exhibited by novice–confederate dyads. More specifically, 20 of
21 dyads (95.23%) achieved task success—completing eight
successful herding trials within the 45-min testing period—with
all novice participants utilizing COC behavior for at least one-
half of all successful trials (M = 6.90 trials, SD = 1.25). Further-
more, although the lone dyad that did not achieve eight successful
trials was in the novice–artificial agent condition, the dyad obtained
two successful trials during the 45-min period—one of which the
novice performed COC-classified behavior.
With respect to task performance, dyads in both the artificial

agent and confederate conditions reached success in a similar
amount of time (confederate: M = 8.62 min, SD = 1.63; artificial
agent: M = 9.32 min, SD = 1.16; P = 0.29, d = 0.49). Moreover,
novices who completed the task with the artificial agent also
achieved levels of herding performance (i.e., herd containment
time, sheep distance from the center, herd spread, and herd
travel) equivalent to those novices who completed the task with
the confederate (all P ≥ 0.15). The equivalence of novice–con-
federate and novice–artificial agent performance compared with
novice–novice performance can be discerned from an inspection
of Fig. 2C.
Finally, during the postexperiment debriefing session, seven

(63.64%) of novices who completed the task with the artificial
agent thought that they were completing the task together with a
human and did not note anything odd in their partner’s behavior.
The remaining four (36.36%) novices indicated that they sus-
pected that their partner may not have been human (i.e., com-
puter driven). Common statements from these latter participants
were “my partner moved too quickly” and “I didn’t understand
why they worked harder than they had to.” Interestingly, one
novice who completed the task with the confederate thought at
times that the behavior was “computer like.”
The statements regarding the artificial agent moving “too

quickly” (Fig. 2B) were due to the artificial agent having a
greater peak oscillatory frequency (M = 1.18 Hz, SD = 0.01) than
the confederate (M = 0.90 Hz, SD = 0.08; P < 0.001, d = 4.82).
Likewise, novices completing the task with the artificial agent
attempted to frequency match with their partner, as they also
exhibited faster oscillatory behavior (M = 0.98 Hz, SD = 0.14)
than their peers working with the confederate (M = 0.86 Hz,
SD = 0.09; P = 0.04, d = 1.02). Despite attempts to frequency
match with the artificial agent, the frequency difference in novice–
artificial agent dyads was greater (M = 0.22 Hz difference, SD =
0.11) than those in the novice–confederate condition (M = 0.05
Hz difference, SD = 0.06; P = 0.001, d = 1.87). This resulted in
less stable coordinative relative-phase relationships within novice–
artificial agent dyads compared with novice–confederate dyads
(P = 0.001, d = 2.01)—consistent with past research indicating
that incidental/unintentional rhythmic coordination is less likely
to occur and is less stable when it does occur as the frequency
difference between movements increases (62). It was because of
this oscillatory frequency difference that novice–artificial agent
dyads had more successful trials that deviated from in-phase/
antiphase coordination (M = 4.94 normalized trials, SD = 2.46)
than for novice–confederate dyads (M = 0.72 normalized trials,
SD = 0.80; Mann–Whitney U = 63, P = 0.001).
It should be noted that, although coupled human–human

dyads are typically attracted toward in-phase or antiphase pat-
terns of COC behavior, such stable relative-phase relationships
are not essential for task success. Rather, they are simply a
natural consequence of the visual informational coupling that
constrains the rhythmic movements of interacting individuals to
in-phase and antiphase patterns of behavioral coordination (i.e.,
synchronization) more generally (47). Indeed, task success for
COC is due to this behavioral mode creating a spatiotemporal
perimeter around the herd, with any interagent relative-phase
relationship ensuring task success.

Experiment 2a. As noted above, the task goal in experiment 2 was
for novice–novice and novice–artificial agent dyads to corral all

of the sheep together anywhere within the game field. That is, no
target region was specified a priori, and dyads were free to self-
choose where to contain the sheep. The sheep were considered
contained or successfully herded together when they were all
within 19.2 cm of each other, consistent with the containment
demands in experiment 1. When this happened, the color of the
sheep changed from brown to red, providing visual feedback to
participants that the sheep had been successfully herded to-
gether. At the start of each trial, the sheep were randomly
scattered throughout the task environment (Fig. 3A shows an
example initial arrangement); again, a trial was considered suc-
cessful if the herd remained within 19.2 cm of each other for a
minimum of 70% of the last 45 s of each 2-min trial.
Overall, the participants in experiment 2 exhibited the same

behavioral dynamics observed in Nalepka et al. (19) and exper-
iment 1; 13 of 19 (61.90%) novice–novice dyads successfully
completed the unconstrained shepherding task (i.e., performed
eight successful trials within the 45-min testing period), with a
mean completion time of 27.69 min (SD = 7.25). All 13 of the
novice participants completing the task with the artificial agent
achieved task success and did so in significantly less time than
novice–novice dyads (P = 0.002, d = 1.35), with novice–artificial agent
dyads having a mean completion time of 19.69 min (SD = 4.23).
With regard to COC discovery, 6 of 13 (46.15%) novice–

novice dyads exhibited predominantly COC behavior for at least
three successful trials (M = 5.17, SD = 1.72), whereas 12 of 13
(92.31%) novices completing the task with the artificial agent
discovered the COC solution (2 dyads had one successful COC
trial, and the remaining dyads had ≥4 successful trials; M =
6.00 trials, SD = 2.63). Consistent with experiment 1, dyads that
used COC behavior contained the sheep for a longer period than
dyads that only adopted S&R behavior while also keeping the
sheep closer together and minimizing herd movement (all P <
0.001, d ≥ 2.53).
As in experiment 1, novice–artificial agent dyads were unable

to frequency match (M = 0.27 Hz difference, SD = 0.18) to the
extent that novice–novice dyads did (M = 0.05 Hz difference,
SD = 0.08; P = 0.002, d = 1.63). Similar to experiment 1, this was
due to the artificial agent producing a significantly greater peak
oscillatory frequency (M = 1.19 Hz, SD = 0.02) compared with
novices in the dyad (M = 0.91 Hz, SD = 0.18) (Fig. 3B), who did
not differ in the average frequency of novice–novice dyads that
discovered COC (M = 0.90 Hz, SD = 0.16; P = 0.88, d = 0.08).
Furthermore, novice–novice dyads that discovered COC behav-
ior had less deviation from predominantly in-phase/antiphase
coordination (M = 1.06 normalized trials, SD = 1.27) than
novice–artificial agent dyads (M = 5.47 normalized trials, SD =
2.29; Mann–Whitney U = 4.50, P = 0.003). Similar to experiment
1, this discrepancy was due to a greater magnitude of relative-
phase variability for novice–artificial agent dyads compared with
novice–novice dyads (P = 0.02, d = 1.67).
Finally, the herding performance of novice–novice and novice–

artificial agent dyads that discovered and adopted COC was
comparatively similar (Fig. 3C). Although novice–artificial agent
dyads kept the sheep to a smaller area (herd area P = 0.02, d =
1.18) and stabilized their mean movement to a greater degree
(herd travel P < 0.001, d = 2.57), dyads in both groups reached
near ceiling on the explicit task goal measure of containment time
(P = 0.06, d = 0.94). Novice–novice and novice–artificial agent
dyads also exhibited equivalent performance regarding the mean
sheep distance away from the herd’s center of mass (COM; P =
0.17, d = 0.17).

Experiment 2b. Following the inability of the artificial agent to
frequency match with participants in experiments 1 and 2a, a new
sample of 20 naïve participants completed the same shepherding
task as in experiment 2a but with a modified artificial agent ca-
pable of adapting its movement frequency during COC behavior.
One participant could not complete the task within the 45 min
allotted, and one participant was excluded from analysis for
adopting an individualistic strategy, which involved circling
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around the entire herd. For the latter participant, although this
behavior had been witnessed by two dyads in ref. 19, this be-
havior was outside what was typically observed in ref. 19 as well
as experiments 1 and 2a, and therefore, the behavior of this
participant was excluded from analysis.
Of the remaining 18 participants, 14 (77.78%) utilized COC

behavior at least once (one participant had one successful COC
trial, and one had two, while the remaining 12 had at least five
successful COC trials;M = 7.25). Importantly, for successful COC
trials, the average frequency difference between the novice and
artificial agent during COC behavior was 0.04 Hz (SD = 0.05).
This was not significantly different from the frequency difference
observed between novice–novice dyads in experiment 2a (P =
0.86, d = 0.08), confirming that the frequency adaptations to
the original shepherding model were successful (Fig. 3B). The
resulting effect was an overwhelming predominance of stable in-
phase and antiphase behavior, such that only 1 (0.01%) trial of a
total of 90 successful COC trials deviated from in-phase/antiphase
behavior. The resulting effect on participant interaction with the
artificial agent was that, although participants in experiment 2b
were told that their partner was a computer-controlled artificial
agent, 7 (38.89%) of 18 participants indicated afterward that, at
times, they thought that they were completing the task alongside
an actual human coactor. These findings are, therefore, consistent
with findings of refs. 43 and 48, which also indicated that partici-
pants attribute human agency to interactive artificial agents that
exhibit human-like behavioral dynamics.

Discussion
This study tested the efficacy of DMPs as a suitable control ar-
chitecture for interactive artificial agents completing complex
and dynamic multiagent tasks with human coactors. For this
study, a dyadic shepherding task was used, which captures the
key features of goal-directed multiagent activity, including task
division, decision making, and behavioral mode switching (19).
Two experiments were conducted in which novice human par-
ticipants were required to complete the shepherding task with
either another human actor or a virtual artificial agent whose
end effector movements were defined by a low-dimensional dy-
namical model composed of environmentally coupled point
attractor and limit cycle dynamics.
As expected, the results revealed that HMI performance was

equivalent to human–human performance, with human–human
and human–artificial agent systems exhibiting the same robust
patterns of S&R and COC behavior that characterized the per-

formance of human dyadic shepherding (19). Moreover, S&R
and COC behaviors were observed in both defined (experiment
1) and undefined (experiment 2) containment contexts, which
not only further highlights the robust generalizability of these
two behavioral modes but also, indicates that the emergence of
COC behavior is not simply a function of specifying a circular
target region [as was the case in experiment 1 and in the original
study by Nalepka et al. (19)]. In both task contexts, optimal
performance involved immobilizing the sheep together as a
collective herd by applying lateral forces evenly distributed
around a predefined or self-selected area of containment. Of
particular significance is that a qualitatively similar behavioral
strategy is observed across a range of other animal herding and
hunting systems—such as the formation of a circle around lone
prey in wolf pack hunting (50) or the creation of a “bubble net”
to encircle herring in group humpback whale hunting (51)—
despite differences in morphological and environmental con-
straints acting on these disparate animal systems. In sheepdog
herding contexts specifically, similar patterns of (S&R-like)
pursuit and (COC-like) oscillatory behavior are also observed
(52, 63, 64). Such patterns are also common in many team sports
contexts (65, 66), implying that the patterns of S&R and COC
behavior observed here reflect context-specific realizations of the
lawful dynamics that define functional shepherding behavior
more generally (20, 31).
With respect to the latter claim, we freely acknowledge that

the current tabletop, laboratory-based task methodology used in
this study prevents any definitive conclusions regarding the de-
gree to which the S&R and COC behavioral modes of shep-
herding behavior observed here might transfer to more real-
world or complex multiagent shepherding task environments.
Future research could address this limitation by investigating
shepherding problems in larger shepherding environments and
from a first-person perspective (i.e., where individuals must
move by walking or running around a large area or field). The
shepherding task could also be expanded to require individuals
to transition from collection and containment to sheep trans-
portation (i.e., moving a herd from one location to another).
Furthermore, online perturbations, like the introduction of new
sheep or altering team composition and member capabilities,
could be introduced, which may lead to role differentiation and
role switching for task success. Together, these more complex
shepherding scenarios would help to further detail not only
the lawful processes that promote the emergence of stable and

Fig. 3. Experiment 2 setup, behaviors, and results. (A) Depiction of experiment 2 with an example initial sheep arrangement. Participants were instructed to
contain sheep within an area equivalent to the red circle depicted in Fig. 2A centered on the sheep herd’s COM. Participants received visual feedback regarding
sufficient containment by changing the sheep’s color to red. (B, Upper) Average power spectra across participants in each dyad type [novice–novice, novice–
artificial agent (experiment 2a), and novice–artificial agent (experiment 2b)] calculated from the last 45 s of all successful trials. (B, Lower) Average power spectra
of each participant type for the novice–artificial agent condition. (C) Performance metrics across behavioral mode and condition: S&R novice–novice dyads—dyads
that only exhibited successful S&R behavior; COC novice–novice dyads—performance during COC-classified trials from dyads that discovered COC behavior; and
novice–artificial agent dyads (experiments 2a and 2b)—performance during successful COC-classified trials. Performance metrics were defined as in experiment
1 with the following exceptions: containment time now referred to the amount of time that all sheep were within the 19.2-cm circle centered on the herd’s
current COM location, and sheep distance now referred to the mean sheep distance (centimeters) from the herd’s current COM location. Error bars represent SE.
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robust multiagent shepherding behavior but also, other forms of
everyday multiagent or social motor coordination.
Although most participants discovered and maintained COC

behavior when working alongside the artificial agent, it is im-
portant to appreciate that one participant (7.69%) in experiment
2a and four (21.05%) participants in experiment 2b completed the
task without adopting COC behavior, indicating that the emergence
and maintenance of COC behavior may depend on specific in-
teractions or contextual experiences with the task environment.
By scaffolding interactive environments as a comember of a team
(or as a “teacher” or “coach” embedded in the task context), ar-
tificial agents can potentially serve a promising role in implicit skill
acquisition contexts, an alternative to utilizing artificial systems for
explicit “trajectory shaping” of ideal behaviors (67, 68). Alterna-
tively, artificial agents embodying human-like dynamics can take
the role of humans in situations where recruitment is difficult,
such as large-scale training exercises, or provide more varied team
composition or role assignment for more robust team coordination
in light of perturbations (69). As demonstrated by human “dynamic
clamp” methodologies, the use of artificial agents as members of
dyadic or group contexts can also allow researchers to deduce
unidirectional effects of the (artificial) member on the rest of the
group to better understand the processes underlying social in-
teractions and diagnosis of social disorders (23, 43, 48, 70).
Outside of using assistive artificial systems for skill acquisition or
training to prepare for future social encounters, embodying ro-
botic systems with human-like dynamics may facilitate action
prediction and safety in domains, such as advanced manufacturing
(e.g., handing objects from robot to human), where the move-
ment capabilities of such systems are not readily apparent (71, 72).
Although most participants were unaware that they were

working alongside an artificial agent in experiment 1b, the few
participants who detected the artificial agent noted that its be-
haviors during COC were “too quick.” This deficit in the human-
like nature of the proposed model was addressed in experiment
2b by including an adaptive frequency function (i.e., frequency
parameter dynamics) that operated to match a human actor’s
natural movement frequency (73). The resulting effect led a
subset of participants to attribute human agency to the artificial
agent, although they were informed that it was a computer-
controlled player. It remains unclear whether this attribution
was due to the artificial agent’s ability to modulate its movement
frequency or the increased occurrence of stable in-phase and
antiphase COC behavior that such frequency modulation affor-
ded. Regardless, consistent with refs. 43 and 48, a combination of
adaptive frequency dynamics and modulations in interagent
coupling strength does seem to facilitate the naturalness of HMI
(14, 43, 48). Recent work by ref. 74 has provided additional
support for the tangible benefits for such adaptions in HMI,
demonstrating how the use of dynamical primitives can be ex-
tended to include “interaction primitives” that promote move-
ment adaptation to particular user styles to facilitate physical
human–robot interaction during a high five or object handover
task. This is to be expected, however, given that interacting in-
dividuals tend to spontaneously and reciprocally adapt their
behaviors during social interaction (45, 47, 75). Indeed, when
producing rhythmic movements with another person, individuals
naturally adapt their movement frequencies to be in alignment
(i.e., exhibit frequency entrainment) (45, 76), with such fre-
quency modulation lingering in “social motor memory” even
after the interaction has ended (75, 77). In other social motor
tasks, participants who resemble similar “motor signatures” are
known to coordinate their behaviors more than those who are
dissimilar (14, 45, 75, 78). Such movement adaptation has nu-
merous social and emotional consequences (79) and is associated
with increased rapport and the success of future interactive task
performance (80). Thus, one could hypothesize that it is this
movement modulation and reciprocal entrainment that led to
attributions of human agency observed in this study. This hypothesis
could be tested in future research as well as whether reciprocal

adaptation might also operate to increase the degree to which
human actors accept or trust interactive artificial agents (12).
In conclusion, this study demonstrated the usefulness of a

human-inspired model of multiagent coordination for HMI and
provides clear evidence that the task/behavioral dynamics of
complex human multiagent coordination can be generatively
modeled from a relatively simple set of DMPs. Consistent with
previous research demonstrating how individual (single-agent)
perceptual motor behavior can be effectively modeled using
similar dynamical primitives (39, 41) or low-dimensional task-
dynamic models (20, 21, 31), the implication is that the organiza-
tion and context-specific regularity or control of embedded single-
agent or multiagent perceptual motor behavior are often a natural
and emergent consequence of the physical, informational, and task
goal constraints that define a given task context (21, 22, 31). In
conjunction with contemporary system optimization methods and
reinforcement and machine-based learning approaches, it there-
fore seems clear that models composed of interactive or coupled
dynamical primitives not only hold great promise for the devel-
opment of robust, human-centered HMI systems but also, have
the potential to provide a generalized modeling framework for
understanding how and why the dynamic patterns of goal-directed,
human multiagent environment activity emerge within a given task
context. Indeed, while it might be difficult to deduce the “equations
of mind” (81, 82) fromDMPmodels alone, exploring the generative
potential of such models with regard to capturing the dynamic
stabilities of human and social activity will likely provide insights
about how intentional and cognitive states emerge and operate to
shape and enhance the lawful dynamics that define (multi-)agent
environment task performance.

Materials and Methods
Shepherding Model. Eqs. F1–F3 in Fig. 1Cwere modified to account for human-
specific adaptations observed in ref. 19. The equations governing the radial
and angular components of the agent’s movement were modified as follows:

€ri +br _ri + «r
�
ri − ξ

�
rsfðtÞ,i + rmin

�
− ð1− ξÞðrΔ + rminÞ

�
= 0 [1]

€θi +bθ
_θi + β _θ

3
i + γθ2i _θi + «θ

�
θi − ξ

�
θsfðtÞ,i

��
= ð1− ξÞ� _θi − _θj

��
A+B

�
θi − θj

�2�. [2]

For Eq. 1, variables ri, _ri, and €ri represent the radial component of agent i’s (i = 1,
2) current position, velocity, and acceleration at time t, respectively. Parameters
br and «r are linear damping and stiffness terms, respectively, for the damped
mass spring function. Eq. 1 reduces the difference between agent i’s current
radial distance (ri) and the distance of the targeted sheep on agent i’s side of the
game field [rsfðtÞ,i]. To ensure that the targeted sheep is repelled toward the
correct direction, agent i maintained a distance rmin away from rsfðtÞ,i.

For Eq. 2, variables θi, _θi, and €θi represent the angular component of
agent i’s current position, velocity, and acceleration at time t, respectively.
Parameters bθ and «θ are the linear damping and stiffness terms, re-

spectively. The Rayleigh (β _θ
3
i ) and van der Pol (γθ2i _θiÞ escapement terms allow

for oscillatory behavior to emerge (36). The coupling function to the right of
Eq. 2 couples the angular component of agent i’s position and velocity to
those of their partner j (35). The format of the coupling function allows for
the model’s angular movements of both agents to achieve the stable in-
phase and antiphase modes of behavior observed in ref. 19 and during in-
terpersonal rhythmic coordination more generally (35, 47) when the reso-
nant frequency between agents is sufficiently small. Parameters A and B
index coupling strength, such that j4Bj > jAj allows for both stable in-phase
and antiphase solutions to emerge.

Parameter bθ was modulated to allow for behavioral mode switching

from S&R and COC behavior. The rate of change of bθ, _bθ, was modeled with
Eq. 3, where δ and α are fixed parameters that determine the rate of change
of bθ, while rΔ + rmin is the radial distance that demarcated S&R and COC
behavior:

_bθ + δ
�
bθ − α

�
rsfðtÞ,i − ðrΔ + rmin

��
=0. [3]

Critically, the model exhibited S&R behavior when rsfðtÞ,i ≥ rΔ and COC be-
havior when rsfðtÞ,i < rΔ. Furthermore, when performing COC behavior, the
model’s radial and angular components were no longer coupled to the
targeted sheep [sf(t),i] but instead, performed oscillatory movements around
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the herd (centered at θ = 0) at a fixed distance away from the containment
region (rΔ + rmin). To account for this, a Heaviside function (Eq. 4) was included
to determine when the model would pursue sf(t),i (note also the ξ terms in Eqs.
1 and 2). Note that, although the inclusion of ξ in Eq. 2 is not necessary for
successful shepherding performance, it ensured a characteristic of human
shepherding performance found in ref. 19, where participants maintain the
center of their oscillatory behavior along the parasagittal plane:

ξ=
�
0,
1,

rsfðtÞ,i < rΔ
rsfðtÞ,i ≥ rΔ

. [4]

For experiment 1, the origin (pole) of each agent’s polar task space was located
at the center of the game field, and the 0° reference direction (polar axis) for
each agent was defined by the ray from the pole to the agent’s side of the
game field. For experiment 2, each agent’s pole at time t was defined at the
herd’s current COM location, which was calculated as the average sheep po-
sition at that time t. The radial component was measured as the distance (in
meters) from the pole, and the angular component was specified as defined
above and illustrated in Fig. 1C. This ensured that the stability of in-phase and
antiphase coordination was represented accurately during the shepherding
task. Additionally, to add stochasticity to the agent’s behavior, an additional
movement noise term, (ηr, ηθ) = (±1m=s2, ±1rad=s2), was added to Eqs. 1 and 2.

The determination of the targeted sheep, sf(t),i, was different between
experiments due to changes in task constraints (Apparatus and Task has
more detail). For experiment 1, because a trial would end prematurely if a
sheep made contact with the surrounding fence, sf(t),i was defined as the
sheep on agent i’s side of the game field that had the largest ratio of
distance from center=distance from fence. For experiment 2, this constraint
was removed from the task, and therefore, sf(t),i was defined as the sheep
on agent i’s side of the game field that was farthest from the sheep’s COM.

Eqs. 1–4 were the finalized model used in experiments 1b and 2. The
parameter values utilized were as follows: br = 10.9987, «r = 98.70672,
rΔ = 0.062, rmin = 0.061539, β= 0.161641, γ = 7.22282, «θ = 61.6225, A = −0.2,
B = −0.2, δ= 23.08993, and α= 80.59288. The values were the result of a
parameter search using a genetic evolutionary algorithm, where the envi-
ronment from experiment 1 was used to assess parameter fitness. Parame-
ters rΔ and rmin were then adjusted manually to match observations from ref.
19, while A and B were fixed constants set to −0.2.

Following the results from experiments 1 and 2a, Eq. 5 was included to
adapt the artificial agent to individual differences in the frequency of
movement during COC (43, 73):

_ω− vðω0 −ωÞ− ð1− ξÞκθj
_θiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

θ2i + _θ i
2

q = 0. [5]

In Eq. 5, ω=
ffiffiffiffiffi
«θ

p
, and thus, Eq. 5 affected the time-varying nature of «θ in Eq.

2. Parameter ω0 was set to be the preferred frequency of the model, which
was set to 5.652 rad=s. This value was determined from the relationship
ω=2π = frequency (36), which was, on average, 0.90 Hz for novice–novice
dyads in experiment 2a. During S&R behavior, ω approached ω0, where v is
the parameter relaxation time. During COC behavior, ω was also influenced
by the current angular position, θj, of the human participant, where κ is the
coupling strength of the participant’s influence. For experiment 2b, v = 1,
and κ= 2. In simulation, these parameter values reached ω convergence
between two coupled artificial agents, where the artificial agent with
ω0 = 5.652 adapted its oscillatory frequency to another agent with natural
frequency that was within 0.2-Hz difference, consistent with what is found
in the human literature of incidental visual coordination (62).

Participants. Participants were recruited from the University of Cincinnati
(experiments 1 and 2a) and Macquarie University (experiment 2b) in exchange for
partial course credit as part of a psychology course requirement. Informed
consent was obtained at the beginning of the experiment session. The task,
procedure, and methodology were reviewed and approved by the institutional
review boards of the University of Cincinnati and Macquarie University.
All participants were right handed and were naïve to the task and pur-
pose of the experiment.
Experiment 1. Thirty undergraduate students (15 female, 15 male), recruited
into 15 dyads, completed the novice–novice condition (experiment 1a). Twenty-
one undergraduate students (8 female, 12 male, 1 undisclosed) participated in
experiment 1b. Each participant was randomly assigned to complete the ex-
periment with a confederate (10 participants) or with the artificial agent
(11 participants). The participants ranged in age from 18 to 23 y old.

Experiment 2a. Fifty-two undergraduate students (35 female, 17 male) par-
ticipated in experiment 2. Thirty-eight participants were recruited into
19 dyads, while the remaining 14 participants completed the experiment
together with the artificial agent. The participants ranged in age from 17 to
23 y old. One participant in the novice–artificial agent condition was later
excluded due to a computer malfunction.
Experiment 2b. Following the findings of experiments 1 and 2a, an additional
20 undergraduate students (12 female, 8 male) were recruited to complete
the shepherding task from experiment 2 alongside a modified version of the
artificial agent capable of adapting its movement frequency during COC. The
participants ranged in age from 18 to 25 y old.

Apparatus and Task. For both experiments, the task was designed using the
Unity 3D game engine (version 5; Unity Technologies) and presented to par-
ticipants via the Oculus Rift DK2 (VR) headset (Oculus VR). The virtual envi-
ronment was modeled such that there was a 1:1 mapping between the virtual
and real experimental testing rooms. While wearing the VR headsets, the task
was presented on the virtual tabletop colocated with a physical table in the real
environment—the real table provided a physical surface for participants to
move their handheld sensors on while controlling the end effector movements
of their virtual avatar in the virtual environment. Participants used wireless
LATUS motion-tracking sensors operating at 96 Hz (Polhemus Ltd.). Participants
moved the sensors along the tabletop, and their hand movements translated
1:1 to the movements of the agent-controlled end effector/sheepdog (modeled
as a cube). In the virtual world, participants were embodied as “crash test
dummies” whose motion was controlled using an inverse kinematic calculator
given the inputs from the participant’s hand and head position (3D model and
calculator supplied by RootMotion). Separate computers were used to power
the VR headsets, and a local area network was used to transfer data using Unity
3D’s UNET server-authoritative protocol. Agent- and task-state variables were
updated at 50 Hz. Only hand position data were transferred across the network
to control for the lack of head motion dynamics in the artificial agent condition.

The task involved participants corralling and containing seven autono-
mous and reactive sheep (modeled as spheres, 2.4-cm diameter). The sheep
exhibited Brownian dynamics, where a randomly directed force would be
applied at a rate of 50 Hz if left alone. To contain the sheep, agents had to
move their sheepdog/cube near the sheep. If either sheepdog was within
12 cm of the sheep, the Brownian force was replaced with a repulsive force
directly away from the agent’s sheepdog at a rate inversely proportional to
the distance between the sheep and the agent-controlled cube. The code
used for the shepherding task and sheep dynamics can be found at https://
github.com/MultiagentDynamics/Human-Machine-Shepherding/ (83).
Experiment 1. Participants were instructed to contain the sheep within the
centrally located red containment circle (19.2-cm diameter) (Fig. 2A). The game
field was a fenced area measuring 1.17 × 0.62 m. Trials were 60 s in duration,
and participants were instructed to keep the sheep contained within the red
circle for at least 70% of the last 45 s of the trial. The sheep were considered
contained if all of the sheep had at least some part of their sphere within the
19.2-cm containment circle. At the end of each trial, participants received visual
feedback on their containment percentage. Participants were informed that, to
complete the shepherding task successfully, they needed to complete eight
successful trials within the 45-min testing period. As an incentive to cooperate
with their partner, participants were informed that the experiment would
automatically end after eight successful trials had been completed and that
theywould receive full research credit even if it occurredwell before the 45-min
testing period (otherwise, the program closed automatically after 45 min).

At the start of a trial, the sheep would appear within the containment
region (Fig. 2A has the initial arrangement). Trials lasted a maximum of 60 s
but would end early if one of two things occurred during a trial: if a sheep
managed to collide with the surrounding fence or if all sheep managed to
escape the centrally located area measuring 28.8 cm in diameter (displayed as
the white annulus surrounding the red containment region). If a trial ended
prematurely, no score was given for that trial. When a trial ended, the sheep
and the participant’s partner disappeared. To initiate the next trial, both
participants moved their cubes to a designated start location 24 cm from the
center of the game field on their respective side of the game field.
Experiment 2. The task was modified from experiment 1. The task space was
expanded to cover a fenced area of 1.5 × 0.8 m. No containment circle was
displayed to participants. Instead, the containment circle (19.2-cm diameter)
was invisible and centered on the sheep’s COM, calculated as the mean
position of the sheep at time t. The artificial agent’s polar task space was
also dynamically centered on the sheep’s COM as opposed to the center of
the game field as in experiment 1. For each trial, the sheep were randomly
scattered across a 0.5 × 0.8-cm boxed region centered on either the left,
center, or right one-third of the task space (Fig. 3A has an example initial
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arrangement). Unlike experiment 1, no premature trial failure conditions
were applied. If a sheep contacted the bordering fence, a repulsive force was
applied to the sheep orthogonal to the fence, causing the sheep to move
toward the field. Finally, the trial length was increased to 2 min to allow for
additional time to collect the sheep.

Participants were informed that the task goal was to bring the randomly
scattered sheep together. If all of the sheep were sufficiently contained,
participants received visual feedback that the sheepwereadequately contained
by changing the sheep’s color from brown to red. To discourage participants
from taking advantage of the limited size of the task space, participants only
received visual feedback if the herd’s COM was at least 10.8 cm from the bor-
dering fence. Participants received a point if the sheep were within the invisible
19.2-cm circle centered on the herd’s COM for at least 70% of the last 45 s of the
trial. Like in experiment 1, the sheep were considered contained if all of them
had some portion of their sphere within the (invisible) containment area. As
with experiment 1, participants had 45 min to obtain eight successful trials.

Procedure.
Experiment 1. Before consent, participants sat in the waiting area together
(experiment 1a) or alongside a confederate coinvestigator, who posed as a
participant, (experiment 1b). Both individuals were brought into the suite
andwere either taken to the same room (experiment 1a) or directed to one of
two experimental rooms (experiment 1b). After consent, participants were
given the VR headset and the motion tracker to be used in their right hand.
The rules and goal of the task were explained to participants, and participants
proceeded to move through the experiment at their own pace with their
partner virtually present on the opposite side of the table. Note that par-
ticipants in the novice–novice condition were told that they could not talk to
each other, and the experimenter enforced this no talking rule.

For experiment 1b, participants were always sent to the same experimental
room, andwhile theywere reviewing the consent form, the coinvestigator was
walked to an adjacent room by the experimenter. The experimenter returned
to the room with the participant and told the participant that the partner was
to be supervised by another experimenter, while the lead experimenter
remained in the room with the participant to answer any questions that the
participant had. The participant’s partner was either controlled by the con-
federate or the artificial agent. The confederate had knowledge of the S&R
and COC behavioral modes. Also, the confederate was told to implement COC
behavior when the sheep were within the containment region and to not
encroach on the novice participant’s side of the task space. After the con-
clusion of the task, participants were funnel debriefed as to the purpose of
the experiment and asked whether they had any doubts that they were
completing the task with a human partner at any time during the experiment.
Experiment 2. Participants were either recruited as dyads (in the novice–novice
condition) or as individuals (in the novice–artificial agent condition and for
experiment 2b). Participants in the novice–novice condition completed the
task together in separate rooms and were told that they were working to-
gether to complete the shepherding task. Participants in the novice–artificial
agent condition and experiment 2b were told that they would be working
alongside an artificial agent. For participants working with the artificial
agent, the capabilities of the artificial agent were never disclosed; partici-
pants were only informed that the agent was there to assist them in com-
pleting the shepherding task. After consent, participants were given their
respective VR headsets and handheld motion controllers. The rules and goal
of the task were explained to participants, and participants proceeded to
move through the experiment at their own pace. After completion, partic-
ipants were debriefed as to the purpose of the experiment.

Data Reduction, Preprocessing, and Measures. Consistent with analyses per-
formed by Nalepka et al. (19), positional (x,y) values of the handheld sensor
were converted to polar (r,θ) coordinates. For each respective agent, the
angular component was centered on the intersection of the agent’s sagittal
and transverse planes, with values of (−3π=2, 3π=2) in the game field. This
allowed for accurate representation of an agent’s movement, including
sagittal plane crossings on the partner’s side of the game field. All analyses
were conducted on the last 45 s of the trial.

COC Classification. COC behavior was defined by the presence of a strong
oscillatory component operationalized as a peak frequency component be-
tween 0.5 and 2 Hz. S&R behavior was classified as having a peak oscillatory
frequency below 0.5 Hz. Welsh’s power spectral density estimates (MATLAB’s
pwelch function) were conducted to determine the oscillatory frequency with the
most power between 0 and 2 Hz. The angular component of agent movements
was low-pass filtered at 10 Hz using a fourth-order Butterworth filter and linearly
detrended. The analysis was windowed at 512 samples, with 50% overlap. For
COC classification in experiment 1, the polar coordinate axis was aligned with
the center of the containment region. For COC classification in experiment 2,
the polar coordinate axis was centered on the sheep herd’s COM.

In addition to a strong oscillatory component, a second feature of COC
behavior is the emergence of a stable in-phase or antiphase relative-phase
relationship (19). To determine the pattern and degree of coordination
among dyads, instantaneous relative-phase analysis was conducted on the
angular time series of dyads. The relative-phase angles that occurred within a
dyad were determined using the Hilbert transform (ref. 84 has details about
this transformation). The relative phase that occurred for a given trial was
distributed across six 30° bins (i.e., 0°–30°, 30°–60°. . .150°–180°). For these
distributions, in-phase and antiphase coordination was indicated by a con-
centration of relative-phase angles near 0° and 180°, respectively (45). Trials
were classified as in phase (0–30°) or antiphase (150–180°) if their respective
bins reached a threshold of 17.933%; this cutoff criterion corresponded to P =
0.05 or the 950th largest value from 1,000 randomly generated relative-phase
distributions (85). After this, the number of trials that were significantly
classified as in phase and/or antiphase was counted and compared across
conditions. The stability of overall coordination was also assessed by taking
the mean resultant vector of the relative-phase distribution for a given trial,
where a value of one indicates absolute coordination or a perfectly stable
relative-phase relationship and zero indicates the complete absence of co-
ordination (i.e., no stable relative-phase relationship).

The following performance measures were used to determine differences
between conditions in both experiments: completion time—the time (minutes)
elapsed to complete the experiment; containment time—the amount of time
(seconds) that all sheep were contained within the containment region (ex-
periment 1) or within the invisible 19.2-cm circle centered on the herd’s COM
(experiment 2); sheep distance—the mean sheep distance from the center of
the target containment region (experiment 1) or the herd’s COM (experiment
2); herd spread—the average herd spread (centimeters squared) measured by
computing the convex hull formed by all of the sheep (the convex hull is defined
by the smallest convex polygon that can encompass an entire set of objects, like
a rubber band placed over a set of pegs); and herd travel—defined as the cu-
mulative distance (centimeters) that the herd’s COM moved during the trial.

All data have been made publicly available via the Open Science Frame-
work and can be accessed at https://osf.io/ke5mv/ (86).
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